Formulae and Equation

$H_{1}^{2}+H_{1}^{2}\to H_{2}^{3}e+n_{0}^{1}+energy$

$H_{1}^{2}+H_{1}^{3}\to H_{2}^{4}e+n_{0}^{1}+energy$

$\begin{array}{l}E=m{c}^{2}\\ \left(8.2×{10}^{13}\right)=m{\left(3.0×{10}^{8}\right)}^{2}\\ m=\frac{8.2×{10}^{13}}{{\left(3.0×{10}^{8}\right)}^{2}}\\ m=9.11×{10}^{-4}kg=0.911g\end{array}$

$\begin{array}{l}E=m{c}^{2}\\ E=\left(1.5×{10}^{-8}\right){\left(3.0×{10}^{8}\right)}^{2}\\ E=1.35×{10}^{9}J\end{array}$

$U_{92}^{235}+n_{0}^{1}\to X_{54}^{140}e+S_{38}^{94}r+2n_{0}^{1}+Energy$

$U_{92}^{235}+n_{0}^{1}\to B_{56}^{144}a+K_{36}^{89}r+3n_{0}^{1}+Energy$

$\begin{array}{l}t=3{T}_{1}{2}}\\ t=3\left(8\right)=24h\end{array}$

$X_{Z}^{A}\to X_{Z}^{A}+\gamma$

$\begin{array}{l}T_{90}^{234}h\to P_{91}^{234}a+e_{-1}^{0}\\ \\ P_{82}^{210}b\to B_{83}^{210}i+e_{-1}^{0}\\ \\ B_{4}^{11}e\to B_{5}^{11}+e_{-1}^{0}\\ \\ F_{26}^{59}e\to C_{27}^{59}o+e_{-1}^{0}\\ \\ N_{11}^{24}a\to M_{12}^{24}g+e_{-1}^{0}\end{array}$

$n_{0}^{1}\to p_{1}^{1}+e_{-1}^{0}$

$X_{Z}^{A}\to Y_{Z+1}^{A}+e_{-1}^{0}$

Electricity

${E}_{2}={P}_{2}{t}_{2}\phantom{\rule{0ex}{0ex}}{E}_{2}=\left(0.02kW\right)\left(8h\right)\phantom{\rule{0ex}{0ex}}{E}_{2}=0.16kWh$

Waves

$\lambda =\frac{ax}{D}$

Pressure

Pascal’s Principle

$P=\frac{F}{A}\phantom{\rule{0ex}{0ex}}P=\frac{50,000}{\pi }\phantom{\rule{0ex}{0ex}}P=15,900Pa$